PART IV

APPROVED

MATERIALS AND MANUFACTURERS LIST

AND

MATERIAL SPECIFICATIONS

PRINCE GEORGE COUNTY, VIRGINIA

MAY 2008
INTRODUCTION

This document represents a listing of specific manufacturers whose products have been approved for use within Prince George County's water and sanitary sewer systems. The listing is divided into four sections.

Sections 1 and 2 contain lists by type of material and indicate the approved product of each. Section 3 provides a listing of approved manufacturers followed by their addresses and local suppliers. Section 4 provides detailed materials specifications. This listing is intended to be used as a reference source for the Utilities Department's employees, contractors and vendors. Materials produced by manufacturers not listed herein are not acceptable for use within the County's systems. Manufacturers interested in submitting products for evaluation and possible approval should communicate their interest to the County Engineer, Utilities Department, County of Prince George, P.O. Box 68, Prince George, Virginia 23875. It should be noted that in some cases manufacturer approval is on a plant-by-plant basis. The County Engineer reserves the right to perform a comprehensive plant and product evaluation and testing, and at the sole option of the department, plant evaluations may be required on an ongoing basis for new and existing facilities. The County Engineer also reserves the right to limit the number of approved manufacturers and products as deemed necessary to control parts inventory and maintenance/ training requirements.

Revisions to this publication will be made periodically by the County Engineer. Users should inquire with the County Engineer as to availability. Questions concerning the information contained in the listings should be referred to the County Engineer.

Any errors or omissions should be reported to the County Engineer immediately. Utilities Department will not allow the use of products and materials identified incorrectly in this publication.

Further details regarding submittal of shop drawings, etc. can be found in Part III of this document.
TABLE OF CONTENTS

Approved Materials and Manufacturers Introduction 2

Section 1: Water System

- **A. Pipes** 6
- **B. Valves (Resilient Seated Gate Valves Butterfly Valves)** 6
- **C. Fire Hydrants** 7
- **D. Meter (Setters) Yokes** 7
- **E. Corporation Stops, Compression Fittings, and Curb Stops** 8
- **F. Vaults – Precast Concrete** 9
- **G. Tapping Sleeves** 9
- **H. Resilient Seated Wedge Tapping Valves** 10
- **I. Fittings and Couplings** 10
- **J. Air Release and/or Vacuum Valves** 11
- **K. Blow Off Valves** 11
- **L. Line Stopping Valves** 11
- **M. Water Meter Boxes** 11
- **N. Valve Boxes** 12
- **O. Copper Tubing** 12
- **P. Service Saddles** 12
- **Q. Pipe Restraints** 12
- **R. Markers** 12
- **S. Flushing Hydrants** 13
- **T. Reduced Pressure Principle Devices** 13
- **U. Casing Spacers** 14
- **V. Lubricants** 14

Section 2: Sanitary Sewer System

- **A. Pipes** 15
- **B. Manholes, Precast Concrete (ASTM C478)** 15
- **C. Frames and Covers** 15
- **D. Fittings (Gasketed)** 15
- **E. Adaptors** 16
Section 3: Materials Specifications

A. Water Systems
 1. Water Pipe and Fittings
 Ductile Iron Pipe
 Pipe Fittings
 Pipe and Fittings
 Polyvinyl Chloride Pipe
 Prestressed Concrete Cylinder Pipe
 Gaskets
 Flame Bolts and Nuts
 Tracing Wire
 2. Gate Valves and Tapping Valves
 3. Butterfly Valves - 16"-72"
 4. Valve Key Extensions
 5. Tapping Sleeves
 Fabricated Steel
 Stainless Steel
 Fabricated Steel with Mechanical Joint Ends
 Cast Iron with Mechanical Joint Ends
 Tapping Sleeve Applications
 Certification, Testing and Installation
 6. Double Check Assembly
 7. Fire Hydrants
 8. Check Valves
 9. Water Service Assembly for 5/8" Water Meters
 10. Water Service Setter for 1", 1½" and 2" Water Meters
 11. Valve Boxes
 12. Air Release Valves
 13. Manholes
 14. Joint Restraint Systems
15. Markers 33
16. Flushing Hydrants 33
17. Cast Couplings 34
18. Casing Spacers 34

B. Sanitary Sewer Systems 35
1. Gravity Sewer and Force Main Pipe and Fittings 35
 PVC Nonpressure Pipe (6”-15”) 35
 PVC Nonpressure Pipe (18”-48”) 35
 Ductile Iron (gravity or pressure) Pipe 35
 Pressure Pipe and Fittings 35
 Pressure Pipe Fittings 35
 Pressure Polyvinyl Chloride Pipe 35
 Push-On-Joint & Rubber Gasket 36
 Cement Mortar Lining 36
 Exterior Bituminous Coating 36
2. Sanitary Sewer Manholes 36
3. Sewage Air/Vacuum Break Valves without Bias Mechanism 37
4. Sewage Air/Vacuum Break Release with Bias Mechanism 38
5. Sewage Plug Valves 38

C. Supplemental Specifications 41
DEPARTMENT OF PUBLIC UTILITIES
PRINCE GEORGE COUNTY

APPROVED MATERIALS LIST
(Minimum Criteria: Meets AWWA and/or ASTM Standards and Prince George County Design Standards, Latest Revisions)

SECTION 1: WATER SYSTEM

A. Pipes

1. C-900 or C-909 - P.V.C. (DR-18, CL. 150) (Sizes 6” and 8” only)

2. a. Class 52 Ductile Iron Pipe minimum or higher classification depending upon design consideration. (Push-On and Mechanical Joint) (6”, 8”, 10”, 12”, 16”, 20”, 24”, 30” & 36”)

b. Restrained Joint Pipe (Pipe Application: Use only where mechanical joint pipe is not available or in vertical applications).

 1) Griffin Snap-Lok (6” – 30”)

 2) American D.I. Pipe Flex-Ring (6” – 36”)

 3) U.S. Pipe TR-FLEX (6” – 36”)

 4) Clow Super Lock D.I. (6” – 24”)

 5) McWane D.I. (30” – 36”)

B. Valves

1. Resilient Seated Gate Valves (for main sizes 4”-12” only)

 a. American Flow Control - Series 2500 (Resilient Wedge)

 b. Clow R/W Valve

 c. Mueller A-2360 (Resilient Wedge)

 d. Kennedy (Model KenSeal II 4571RSGV)

2. Butterfly Valves (For Use on 16” and Larger Lines)

 a. Mueller - Lineseal III

 b. DeZurik Baw AWWA

 c. ValMatic American BFV (16” and Larger)

 d. Milliken Models 510 and 511 (16” and Larger)
C. Fire Hydrants

1. Mueller Centurion A-421
2. Kennedy “K81D” (Dual rotated hydrant)
5. Clow Medallion
6. American Darling - Mark 73-2

D. Meter (Setters) Yokes

1. For 5/8” Meters: 5/8” x 9” Riser Meter Yoke with one lockwing ball or plug type, full port angle meter stop, with saddle nuts, ¾” copper tube size compression connection inlet and outlet.

 a. Ford
 1) V171-12W-44-33 (locking plug type angle stop with copper tubing size compression connections inlet and outlet)

 2) VB171-12W-44-33 (locking ball type angle stop with copper tubing size compression connections inlet and outlet)

 b. Mueller

 * 1) H-1470 (plug type angle stop, 12 inch height, also requires H-15450 end connections for copper tubing size compression inlet and outlet)

 *2) B-2470 (ball type angle stop with compression connections inlet and outlet for copper pipe)

 * Note: County requires manufacturer to supply these connections "completely factory assembled" and tightened to proper torque.

 c. Cambridge Brass

 1) 6020-109H3H3-VO

2. For 1” Meters:
Commercial - Domestic use by Businesses, Doctors and Dentists Etc. 1” x 12” Riser Meter Yoke with two lockwing, ball or plug type angle stop on inlet and outlet, saddle nuts, copper tubing size compression inlet and outlet with locking ball valve bypass.

 a. Ford

 1) VV174-12W-44-44

 2) VVB-174-12W-44-44

 b. Cambridge Brass 6020-412H4H4-VO

3. For 1½” and 2” Meters (Businesses, etc. with bypass):
*a. Ford - for 1½" Meter - VBB76-12B-44-66 and for 2" Meter - VBB77-12B-44-77

*b. Mueller (for both) - H-1423

For 1½" and 2" Meters (residential and irrigation with bypass):

*a. Ford - for 1½" Meter - VBB76-7-11-66 and for 2" Meter - VBB77-8-11-77

*b. Mueller (for both 1½" and 2") - #1423-00

*These products are acceptable provided manufacturer makes the necessary modifications to comply with the County's materials specifications for 1½" and 2" water meter setters.

E. Corporation Stops - Plug Type only for ¾" and 1"; Ball Valves for 1½" and 2" (¾" thru 2" with "cc" thread inlet)

1. Mueller
 a. H-15013

2. Ford
 a. F-1000-3G (¾" corp stop with compression connection for copper)
 b. F-1000-4G (1" corp. stop with compression connection for copper)

3. Ford FB-1000G (Ball valve with compression outlet only for 1½" & 2")

Compression Fittings - (for 1½" and 2" only)

1. Mueller 110

2. Ford Grip Joint

Curb Stops - ¾" and 1" copper compression, full port, ball or plug type curb stop, with or without check.

1. Ford ¾” Z44-333G B44-333G
 Ford 1” Z44-444G B44-444G

2. Mueller ¾” & 1” H-15207 B-25209

Curb Stops - 1½” and 2” pipe threaded or compression, full port, ball type curb stop, with or without check

1. Ford 1½” B44-666G B11-666
Ford 2” B44-777G B11-777

2. Mueller 1½” & 2” B-25209 B-20283

F. Vaults, Precast Concrete - Requirements and configurations as shown on plans. (For other approved vaults, see “Water Meter Boxes” under Section 1).

1. Americast
2. Tindall Vaults
3. Clear Flow Company

G. Tapping Sleeve - Sleeves must conform to County's latest application instructions as specified in Section 4 entitled Materials Specifications.

1. **(Stainless Steel Sleeves)**
 a. ROMAC SST and SST III (6”-24”)
 b. Ford FAST (6”-24”)
 c. Mueller H304 (6”-24”)
 d. Dresser Style 630 (6” - 12”)
 e. Smith-Blair Models 662 & 663 (4”-20”)
 f. Mueller H300 (Not to be used on Asbestos Cement and Cast Iron Pipe)
 g. Power Seal – Stainless Steel Tapping Sleeve, Model 3490

2. **(M.J. Cast/Ductile Iron Sleeve)**
 a. Mueller (H-615 for 4”-24” on Ductile Pipe and H-619 for 4”-12” C/A Pipe)
 b. Clow (F-5205)
 c. American Flow Control - (Model 2800-A for A/C pipe; Model 2800-C for 4”-12” D.I. and PVC pipes; Model 1004 for PVC pipe and 16” and larger D.I. pipe)

H. Resilient Seated Wedge Tapping Valves

1. American Flow Series 500 Resilient Wedge Valve (for 6”-12” only)
2. Mueller T-2360 Resilient Wedge Valve (for 6”-12” only)
3. American Flow Control - Series 2500 (for 16”-30” only)
4. Kennedy Model #4950 (for 4” and 24” only)
5. Clow Model F6114 (for 16” and 36” only)

I. Fittings (Bends, Crosses, Tees and Grade Lok Offset Glands) Ductile Iron only
1. D.I. Compact AWWA C153 or D.I./C.I. AWWA C110
2. D.I. Special Coated Compact Fittings AWWA 153

Couplings (For pipe sizes 12” and smaller)
1. Cast Couplings (transition or straight)
 a. Romac 501 series (long sleeve coupling)
 b. Ford #FC2A (long sleeve coupling)
 c. Smith Blair (Rockwell) #442 (long sleeve coupling)
 d. Ford FC2W (Wide Range)

J. Air Release or Combination Air Release and Vacuum Valves
(Engineer is responsible for specifying the appropriate type for its designated use)
1. Clow 5401-E (for 2” inlet with small orifice)
2. Clow 5402-A (for 1” inlet and 1” orifice)
3. APCO (Product Bulletin No. 600 and/or 601)
4. G. A. Industries Type 1 GH4-150 Type 4 GH 7-K
5. Valmatic
6. Cla Val (Models 34, 35 & 36)

K. Blow Off Valves (Temporary blow off only)
1. 2” Bronze Ball Valve
 (open to most manufacturers, i.e., Grinell, Epsco, etc.)

L. Line Stopping Valves
1. Hydra-Stop

M. Water Meter Boxes/Vaults
1. Precast Concrete Box:
a. Lyttle Service Co. LLC T/A Stamie E. Lyttle Co., Inc. (used with 1”, 1½” or 2” water meters and assemblies)
b. Clear Flow Model CFLD6060 (for 3” and 4” water meters and assemblies)

2. Cast Iron Box (for 5/8” water meters and assemblies 24 inches in height):
a. Capitol Foundry Design # MBX-10 and MBX-11

N. Valve Boxes (Slip Type Only)
1. SIGMA
2. Bingham and Taylor
3. Capitol Foundry

O. Copper Tubing - (as manufactured for domestic use)
1. Type “K” (soft) - for ¾” and 1” service lines
2. Type “K” (hard copper only) - for 1½” and 2” service lines

P. Service Saddles - (epoxy or nylon coated with double stainless steel straps, except Ford may have a 1¾” wide strap and 2 bolts)
1. ROMAC - Style 202N
2. Smith-Blair (Rockwell) SB 317
3. Ford FC 202 Series, with cc Threads
4. Mueller - Model DRS2 (with double straps for 2”-12”)
5. Power Seal – Model 3417DI

Q. Pipe Restraints (must be UL Listed and FM Approved)
1. For PVC Pipe (Sizes up to 8”)
a. Megalug Series 2000 PV (PVC Pipe - MJ Fittings), Megalug Series 1500 (PVC Bell and Spigot Joints)
b. Romac Style 611 (PVC Bell and Spigot Joints)
2. For Ductile Iron Pipe -
a. EBAA Iron - Megalug 1100 Series (MJ Fittings) All Sizes
b. Romac - RomaGrip Sizes 4”-12”
R. Markers

1. For All Types of Pipes

a. 66” Carsonite White Utility Marker Post with two (2) factory applied decals (#CW-112 or #CWV-116, whichever is applicable; and Stock #P-101 decal)

b. Greenline Markers - Model #'s FLUlWH66 and DSUlWH66 with factory applied decals 159A, 029A or 094A, whichever is applicable in Prince George County.

S. Flushing Hydrants (For permanent use)

1. Kupferle 2” Main Guard Model #78

T. Reduced-Pressure Principle Zone Devices (U.L. classified or F.M. approved, AWWA compliant and ASSE listed 1013)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model #'s</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ames</td>
<td>4000 RP</td>
<td>4” - 10”</td>
</tr>
<tr>
<td></td>
<td>4000 SS</td>
<td>3” - 10”</td>
</tr>
<tr>
<td>Cla-val Co.</td>
<td>RP-2</td>
<td>¾” - 1½”</td>
</tr>
<tr>
<td>Conbraco Industries, Inc.</td>
<td>40-200</td>
<td>3”</td>
</tr>
<tr>
<td></td>
<td>40-20A</td>
<td>4”</td>
</tr>
<tr>
<td></td>
<td>40-20C</td>
<td>6”</td>
</tr>
<tr>
<td></td>
<td>4020E02</td>
<td>8”</td>
</tr>
<tr>
<td></td>
<td>4020G02</td>
<td>10”</td>
</tr>
<tr>
<td></td>
<td>40200</td>
<td>2½” - 10”</td>
</tr>
<tr>
<td>Febco</td>
<td>6C-M</td>
<td>3” - 10”</td>
</tr>
<tr>
<td></td>
<td>FRPII</td>
<td>¾” - 1½”</td>
</tr>
<tr>
<td></td>
<td>825 D & YD</td>
<td>3” - 10”</td>
</tr>
<tr>
<td></td>
<td>860</td>
<td>2½” - 8”</td>
</tr>
<tr>
<td></td>
<td>880 (V)</td>
<td>2½” - 10”</td>
</tr>
<tr>
<td>Hershey Products, Inc.</td>
<td>6</td>
<td>4” - 10”</td>
</tr>
<tr>
<td></td>
<td>6C</td>
<td>4” - 10”</td>
</tr>
<tr>
<td>Watts Regulator Co.</td>
<td>900</td>
<td>3” - 6”</td>
</tr>
<tr>
<td></td>
<td>909</td>
<td>3” - 10”</td>
</tr>
<tr>
<td></td>
<td>009RP</td>
<td>3”</td>
</tr>
<tr>
<td>Zurn Industries, Inc. (Wilkins)</td>
<td>375</td>
<td>2½” - 6”</td>
</tr>
<tr>
<td></td>
<td>375DA</td>
<td>4” - 6”</td>
</tr>
<tr>
<td></td>
<td>475</td>
<td>4” - 6”</td>
</tr>
<tr>
<td></td>
<td>475V</td>
<td>4” - 6”</td>
</tr>
<tr>
<td></td>
<td>975</td>
<td>2½” - 10”</td>
</tr>
<tr>
<td></td>
<td>975DA</td>
<td>2½” - 10”</td>
</tr>
</tbody>
</table>

U. Casing Spacers
1. Cascade
2. Advance Model SSI
3. PSI Model No. C8G-2 Model No. C12G-2
4. Power Seal Model No. 4810
5. BWM Model BWM-SS
6. CCI Model CSS

V. Lubricants

1. Blue Lube
2. Slikstyx (new product formulation only)
SECTION 2: SANITARY SEWER SYSTEM

A. Pipes - Gravity

1. PVC Sanitary Sewer Pipe SDR35 (ASTM D3034 6” - 15”)
2. PVC Sanitary Sewer Pipe Envriio-Tite SDR 35 (ASTM F1760 6”-15”)

Pipe - Pressure

1. C-900 or C-909 - P.V.C. (DR-18, CL. 150) (Sizes 6” & 8”)

2. a. Class 52 minimum or higher classification depending upon design consideration. (Push-on and Mechanical Joint) (6”, 8”, 12”, 16”, 20”, 24”, 30” & 36”)
 b. Restrained Joint Pipe (Pipe Application: Use only where mechanical joint pipe is not available or in vertical applications).

 1) Griffin Snap-Lok (6” - 30”)
 2) American D.I. Pipe Flex-Ring (6” - 36”)
 3) U.S. Pipe TR-FLEX (6” - 36”)
 4) Clow Super Lock (30” - 36”)

B. Manholes, Precast Concrete (ASTM C478)

1. Hanson Pipe & Products
2. Americast
3. Tindall Concrete Products, Inc.

C. Frames and Covers

1. Manhole
 a. Street Type (MH-1-S)
 1) Neenah Foundry
 2) Capitol Foundry
 3) Sigma Corporation
 b. Watertight
 1) Capitol MH 1-S/WT

D. Fittings (Gasketed) - Gravity

a. Kor-N-Tee
b. Inserta Tee

2. PVC Sanitary Sewer Fittings (ASTM D3034 SDR35 6” - 27”)

a. Certain-Teed Products Corporation

Fitting (D.I. Only) Pressure

1. D.I. Compact AWWA C153 or D.I./C.I. AWWA C110
2. D.I. Special Coated Compact Fittings AWWA 153
E. Adaptors
1. Fernco Pipe Adaptors – Doughnut style only for laterals

2. GPK Manhole Adaptors (See MAN-16)
 a. GPK manhole adaptor adapting PVC pipe to concrete with quick crete for manholes with BUO's.
 b. GPK PVC drop manhole cross with manhole adaptors (6” and 8” only) strapped to manhole.

F. Gaskets & Flexible Manhole Connectors
1. Kor-n-seal Connector, NPC Systems, Inc.
2. “O” Ring Gasket

G. Saddles
1. The General Engineering Company (GENECO) Sealtite Model H with Bell End for SDR-35 PVC
2. ROMAC CB Sewer Saddle
3. Inserta Tee

H. Steps, Manhole
1. MA Industries, Inc.
 Style No. PSl-PF
2. Bowco Industries, Inc.
 Model #93810 (48” and 54” Dia. M.H.'s)
 Model #93813 (60” Dia. M.H.'s and Larger)
3. Press Seal
 Model #P-10938 (48” and 54” Dia. M.H.'s)
 Model #P-14850 (60” Dia. M.H.'s and Larger)

I. Stoppers (Plugs)
1. For PVC Sanitary Sewer Pipe (with wing nuts and ears)
 a. Certain-Teed Products Corporation
 b. Cherne
2. For D.I. Pipe (Slip Joint Plug)
 a. Griffin Pipe Products
 b. Tyler
 c. Union Foundry
 d. Harrington Corporation (HARCO)
 e. Standard International
 f. Trinity Valley
 g. American Cast Iron
 h. U. S. Pipe and Foundry
 i. Cherne
J. Valves

1. Sewage Air/Vacuum Release Valves
 a. Vent-O-Mat Series RGX or RGSb – “Anti-Surge”
 (Note: Engineer must design project using the
 appropriate valve.)
 b. A.R.I. Combination Air Valve – Model D-020 and D-025

2. Plug Valves
 a. DeZurik Series 100 [Figure 118] -
 (Non-Lubricated Eccentric)
 b. Val-Matic Series 5900 or 5800 Cam-Centric
 c. Milliken - Millcentric (Eccentric Plug Valve)
 d. Homestead Eccentric Plug Valve - Series 120
 e. Clow Eccentric Plug Valve (3”-24”)

K. Manhole Adjusting Rings

1. Concrete Reinforced

L. Casing Spacers

1. Same as under “Section 1: Water System”

SECTION 3: MATERIALS SPECIFICATIONS

All products must comply with the Materials Specifications as referenced in Part IV herein, and the Standard Details as reflected in the Department of Public Utilities' Standard Design Specifications and Details Manual. All references to ASTM, AWWA, and other standards shall include latest revisions. In addition, all products must have the approval of the State Health Department prior to the submittal to the County Engineer for consideration.

A. WATER SYSTEMS

1. Water Pipe and Fittings:
 a. Ductile iron pipe shall meet the requirements of AWWA C151. Pipe shall be thickness Class 52. Pipe shall have cement-mortar lining and a bituminous seal coat conforming to the requirement of AWWA Standard C104. Thickness class shall meet the requirements of AWWA C150.
Minimum wall thickness for pipe shall be as follows: 6"-0.28", 8"-0.30", 12"-0.34", 16"-0.37", 20"-0.39", 24"-0.41", 30"-0.47". A minimum of 5% of the pipe furnished shall be gauged for roundness full length and so marked. Pipe sizes of 10" and greater will only be ductile iron.

b. Pipe fittings shall meet the requirements of AWWA C110 (ductile iron or cast iron) or AWWA C153 (ductile iron compact). All fittings shall be Pressure Class 250. Fittings shall have a cement-mortar lining and a bituminous seal coating or a 6-8 mil (nominal thickness) fusion bond epoxy lining/coating in compliance with AWWA C550.

c. Pipe and fittings shall have either mechanical joint or push-on joint, both conforming to the requirements of AWWA C111. Bolts shall be high strength cast iron having an ultimate tensile strength of 75,000 psi and a minimum yield point of 45,000 psi.

d. Polyvinyl chloride pipe (PVC) 6" & 8 in size shall conform to the requirements of AWWA Specification C-900, with gasket joints, DR-18 Class 150 with iron pipe O.D. Fittings shall be ductile iron or cast iron, Pressure Class 250, with mechanical joints. Additional criteria as set forth by the County of Prince George is outlined in Section 4.C.1. entitled "Supplemental Specifications - Additional Criteria for Polyvinyl Chloride Piping for Water and Sanitary Sewer Systems". PVC pipe will only be allowed for 6" and 8" pipe. Ductile iron may be required due to field conditions.

e. Gaskets - Gaskets for mechanical and push-on joints shall meet the latest AWWA Specifications. Hemp or jute shall not be used. Gaskets for 8" I.D. pipe and smaller shall be 1/16" thick and gaskets for installation on larger size pipe shall be 3/32" thick.

f. Flange Bolts and Nuts - Flange bolts shall be of the length required for various connections. Bolts shall be of steel and have rough square heads made to American Standard rough dimensions and shall be chamfered and trimmed. Bolts and nuts shall be threaded in accordance with American Standard ASA B1.1-1935 coarse thread series, Class 2 fit.

2. Valves:

a. Resilient Seated Gate Valves
 1) All resilient gate valves shall fully comply with AWWA C-509 (3"-12") or C-515 (4"-12"), latest revision.
 2) All valves shall be manually operated non-rising stem, equipped with operating nut, for installation in a vertical position, unless otherwise specified, and the valve body shall be ductile iron or high strength cast iron with reinforced flanges.
 3) All iron surfaces, internal and external must be coated with a minimum 8 mils thickness of hand applied epoxy or 3-5 mils thickness fusion bonded epoxy.
4) The valve stem shall have an independent stem nut (not rigidly attached to the gate) which allows the gate to flex without stressing the stem.
5) All valves shall have either a bronze stem collar bushing with two O-rings above the stem or a stem collar with one O-ring below and one O-ring above the stem collar.
6) Seating shall use compression closure. The gate shall be of a true bi-directional, mirror image design.
7) Valves shall have a smooth bottom design.
8) Valves shall have a port in the bottom of the gate to allow purging of the gate.
9) All valves shall open left and have end connections of Mechanical Joint, or as specified by the Department of Public Utilities.
10) All castings shall be clean and sound without defects. The castings shall be clean and perfect without blow or sand holes or defects of any kind. No plugging, welding or repairing of cosmetic defects will be allowed.
11) Valves 3" through 12" must have a minimum 200 psi working and 400 psi test pressure.
12) If the standard valve provided by a Manufacturer does not fully comply with these specifications, but compliance can be attained by providing optional features, then each valve must be permanently marked to indicate the option or options that have been provided. The method of marking valves to indicate that options are included must be approved by the County Engineer.
13) All bonnet bolts must be stainless steel.
14) All internal and external bolts shall be a minimum Type 304 stainless steel.

b. Resilient Seated Wedge Tapping Valves:
1) Tapping valves shall meet above specifications as referenced in 2.a. above. The outlet end shall be suitable for use with the type of pipe specified, either M.J. or Hub end.
2) Tapping valves will be suitable for use with all approved manufactured tapping sleeves without modification.

3. Butterfly Valves - 16" - 72" - All butterfly valves shall conform to the latest revision of AWWA Standard C-504, Class 150-B unless otherwise indicated and meet the following:

a. Valve bodies shall be cast iron, ASTM A-126 Class B or ductile iron per ASTM A-536 grade 65-45-12. Body ends shall be flanged with facing and drilling in accordance with ANSI B16.1, Class 125 or mechanical joint in accordance with AWWA Standard C-111 or ANSI A21.11. All mechanical joint end valves shall be furnished complete with joint accessories (bolts, nuts, gaskets and glands), and is for underground use only. All valves shall conform with AWWA C-504, Table 3, Laying Lengths For Flanged Valves and Minimum Body Shell Thickness for all Body Types.

b. Valve disc shall be cast iron, ASTM A-126 Class B or ductile iron ASTM A-536, grade 65-45-12. Valve disc shall be of the offset or symmetrical design providing
360 degree uninterrupted seating, and for sizes 24" and larger shall be of the flow through type, cored, or domed.

c. The resilient seat shall be natural rubber or BUNA-N located on the disc or the body retained by an epoxy backing ring or 18-8, Type 304 stainless steel retaining ring secured to the disc by 18-8, Type 304 stainless steel screws. The seat shall be capable of mechanical adjustment in the field and field replaceable without the need for special tools on 24" and larger valves. Valve body seat shall be 18-8, Type 304 Stainless Steel.

d. Valve shaft shall be 18-8, Type 304 stainless steel. Valves shall have either one piece (through shaft) or two piece (stub shaft). The shaft should be attached to the disc by means of O-ring sealed taper pins with lock nuts on 30" and larger valves. Taper pins should be either 304S.S or 416S.S heat treated for added strength or shaft is attached with stainless steel shaft journals hexmated to drive shaft.

e. The valve assembly shall be furnished with a nonadjustable factory set thrust bearing designed to center the valve disc at all times.

f. Shaft bearing shall be contained in the integral hubs of the valve body and shall be of non-cold flowing phenolic backed, PTFE or corrosion resistant self-lubricated sleeve type.

g. Valve shaft seal shall consist of O-rings or Split-V ring. Where the valve shaft projects through the valve body for the actuator connection, the O-ring or Split-V ring packing seal shall be field replaceable as a part of a removable bronze cartridge, without valve disassembly. Connection to the actuator shall be provided by means of at least 2 bolts for 16" - 24" valves and at least 4 bolts for 30" and larger valves.

h. When manual actuators are required they shall be amply sized for line conditions. All manual actuators should be traveling nut or wormgear type. All 16" through 24" butterfly valve manual actuators shall be capable of withstanding 300-450 foot pounds of input torque against the open or closed stops. All actuators shall have adjustable mechanical stop limits. The closed position stop may or may not be externally adjustable.

i. All valves shall be coated with AWWA Standard Epoxy Coatings, in conformance to AWWA Standard C-550, latest revision. All interior ferrous surfaces, including disc, shall be coated a nominal 10 mils thick for long life; and body exterior shall have a minimum 8 mils thickness of hand applied epoxy or 3-5 mils thickness fusion bonded epoxy coating in order to provide protection in shipment and
storage, and to afford a superior base for field-applied finish coats.

j. All internal and external bolts shall be a minimum Type 304 stainless steel.

4. Valve Key Extensions:

a. The extension shall be one and one half inches (1½”) solid core steel with the upper operating nut and bottom coupling welded to the stem.
b. The 2” square operating nut on top shall be welded to form a complete box with no openings.
c. 2½” square socket section on bottom shall be tapped on 4 sides for minimum 5/16” N.C. socket head set screws and screws shall be provided.
d. Valve extensions shall be coated with oil-based enamel or other rust preventative coating.
e. The operating nut of the valve shall be drilled on opposite sides to allow insertion of the setscrews.
f. A four and one half inch (4½”) diameter steel plate, ¼” thick rock shield, shall be welded to the stem two inches (2”) below the bottom of the top operating nut.

5. Tapping Sleeves:

Fabricated Steel:

a. The body of the tapping sleeve shall be of 3/8” carbon steel, ASTM grade A285.
b. Flange to be AWWA C207 Class D ANSI, 150 lb. drilling.
c. The carbon steel body shall have a 12 mil thick coating of fusion-bonded epoxy. Bolts shall be 18-8, Type 304 stainless steel.
d. Gaskets shall be Grade 60 compounded for use with water, alkalies, mild acids and most hydro-carbon fluids, up to 212° F.

Stainless Steel:

a. The body of the tapping sleeve shall be of 18-8 type 304 stainless steel.
b. Branch/flange to be 304 stainless steel, 150 lb. drilling.
c. MJ Gland shall be permanently affixed to the outlet branch and be 304 stainless steel.
d. Gaskets shall be Grade 60 compounded for use with water, alkalies, mild acids and most hydro-carbon fluids, up to 212° F.
e. Clamping hardware (nuts, bolts and washers) shall be 18-8 type 304 stainless steel, with plastic anti-gall washers. Drop-in bolts or welded-on studs are acceptable.

Fabricated Steel with Mechanical Joint Ends

a. Sleeve body, valve flange, gaskets, hardware and coating to be the same as the fabricated steel tapping sleeve.
b. The mechanical joint glands to be ASTMA-36 iron or ductile iron.
c. The gland retaining hardware (nuts, bolts and washers) to be 18-8
type 304 stainless steel.

Cast Iron with Mechanical Joint Ends:

a. The body and glands of the tapping sleeve shall be of ASTM-126, Class B cast or ductile iron. Sleeve shall be furnished complete with all mechanical joint accessories (bolts, nuts, gaskets and glands), and shall have a bituminous seal coating.
b. Valve flange, body gaskets and clamping hardware (bolts, nuts and washers) shall be as specified for the fabricated steel tapping sleeve.

Tapping Sleeve Applications

a. The use of tapping sleeves and valves on the County water system will be considered where it can be shown that installation of a tee and line valve on the existing water main will not be beneficial to the County.
b. The stainless steel, fabricated steel (with mechanical joint ends), or cast/ductile iron (with mechanical joint ends) tapping sleeves may be used for any approved tap on C-900 PVC or ductile iron water main.
c. The stainless steel, fabricated steel (with mechanical joint ends), or cast/ductile iron (with mechanical joint ends) tapping sleeves may be used for all approved taps on asbestos-cement pipe (except 16" size) and for size-one size or one size down taps on all other pipe material.
d. Due to the non-availability of the mechanical joint tapping sleeve for 16" asbestos-cement pipe, the stainless steel sleeve must be used for taps on this pipe.
e. The fabricated steel tapping sleeve may be used for approved two (or more) size down taps on C-900 PVC, cast iron or ductile iron water main.

Certification, Testing and Installation:

a. All tapping sleeves must be crated for shipment with a signed manufacturer's tag certifying that the sleeve meets Prince George County specifications. The County inspector shall turn this tag in to the contract file with the location of installation noted on the tag.
b. Rigorous testing and conditions relating to tapping sleeves, applied to all manufacturers, is standard operating procedure. These conditions are as follows:
 1) The tapping sleeve shall be tested in place to a minimum of 200 psi. It is the contractor's responsibility to order the correct pressure rated tapping sleeve. However, for pre-stressed concrete steel cylinder pipe, taps 12" or less shall be tested to 150 psi and taps larger than 12" shall be tested at 10% above the line pressure of the main being tapped.
 2) If the sleeve fails the 200 psi pressure test, the original failed sleeve shall be replaced with an entirely new sleeve.
 3) The concrete thrust block shall be poured to also support the
tapping sleeve from beneath. The tapping sleeve, valve and tapping machine assembly is to be adequately supported during the tapping operation to prevent movement or rotation of the tapping sleeve.

4) Installation instructions must be followed in strict accordance with the latest County's procedures.

6. Double Check Assembly

a. Valve Pit:

1) Valve pits shall be of adequate size and readily accessible for inspection, testing, maintenance, and removal of equipment contained therein. They shall be constructed and arranged to properly protect the installed equipment from movement of earth, freezing, and accumulation of water. Poured-in-place or precast concrete, with reinforcement, are appropriate materials for construction of valve pits. Pits constructed of block material are not acceptable. Precast concrete vaults will be as reflected on the standard detail drawings (Part II of this document).

2) The vault shall be watertight. The vault shall be coated on the outside face with a mastic or bituminous coating to prevent infiltration.

3) The vault will contain positive drainage. A sump with gravity flow is required if water table problem does not exist. Where water table problem exists, a sump pump is required.

4) Pipe penetrations shall be sealed with "Linkseals", a mastic coating or equal. A clearance of 1"-3" shall be provided around the pipe where the fire line enters and exists the pit.

5) Vaults greater than 3.0' in depth will have some type of ladder provided for ingress and egress.

6) The entrance hatch to the vault will be a JD-2AL 4'-0" x 4'-0" Bilco door, or approved equal.

c. Valving:

1) The double check valve assembly shall be a Watts No. 709 or equal surrounded by an OS&Y gate valve on both the inlet and outlet side of the assembly.

2) The Fire Department connection may or may not be located in the vault. The use of post indicating valves, location of the Fire Department connection, and other related fire questions will be addressed by the Fire Department.

3) Pipe stands such as poured concrete or fabricated metal shall be provided to support the entire assembly. Metal Pipe stands shall be galvanized or be coated with an acceptable paint to prevent rust. Concrete block or brick is not an acceptable support material.
7. Fire Hydrants:

a. Fire hydrants shall be manufactured in full compliance with this specification and shall also comply with the American Water Works Association Fire Hydrant Specification C-502, latest revision and The following:

1) Type: Compression - Dry Standpipe: Valve shall open against and close with the pressure. The design shall be such that all internal operating parts can be removed through the standpipe and main valve rod extended without excavating.

2) Size: Internal valve diameter shall be a minimum 4½".

3) Inlet Size and Type: 6" mechanical joint end with accessories.

5) Hose Nozzles: Each hydrant shall be equipped with two 2½" I.D. hose nozzles with National Standard threads, one quarter turn bayonet lock or threaded in with O-ring seal and suitable locking arrangement.

6) Steamer Nozzle: Each hydrant shall be equipped with one 4½" Steamer Nozzle having National Standard Threads, one quarter turn bayonet lock, or threaded in with O-ring seal and suitable locking arrangement.

7) Direction of Open: Left, counter-clockwise.

8) Size and Shape of Operating Nut and Cap Nuts: to be 1½" point to flat pentagon. Each hydrant shall be equipped with a weather cap or weather seal.

8) Seal Plate: The hydrant shall be so constructed that a moisture-proof lubricant chamber is provided which encloses the operating threads, thereby automatically lubricating the threads each time the hydrant is operated. The lubricant chamber shall be enclosed with at least three O-rings. The two lower O-rings will serve as pressure seals; the third O-ring will serve as a combined dirt and moisture seal to prevent foreign matter from entering the lubricant chamber. The hydrant shall be equipped with either an anti-friction washer or bronze bushing to reduce operating torque. The bonnet will be secured to the hydrant using bolts and nuts.

9) Standpipe - Groundline Safety Construction: The standpipe sections shall be connected at the groundline by a two part, bolted safety flange or breakable lugs. The main valve rod sections shall be connected at the groundline by a frangible coupling. The standpipe and groundline safety construction shall be such that the hydrant nozzles can be rotated to any desired position without disassembling and removing the top operating components and the top section of the standpipe. The minimum inside diameter of the standpipe shall be 6".
10) Main Valve, Rod Assembly: The main valve rod assembly shall be so constructed to allow removal of all operating parts through the standpipe regardless of depth of bury, using a removal wrench which does not extend below the groundline of the hydrant. The main valve seat ring shall be bronze and its assembly into the hydrant shall involve bronze to bronze thread engagement, and the valve assembly pressure seals shall be obtained without the employment of torque compressed gaskets. The design of the main valve rod shall be such that the operating threads at the top of the rod and the valve assembly threads at the bottom of the rod are isolated from contact with water in the standpipe or in the hydrant inlet shoe.

11) Drain Valve: The operation of the drain mechanism shall be correlated with the operation of the main valve and shall involve a momentary flushing of the drain ports each time the hydrant is opened. The drain ports shall be fully closed when the hydrant valve is more than 2½ turns open and the drainage channel in the bronze valve seat ring shall connect to two or more outlet drain ports. Springs may be employed in the hydrant valve or drain valve mechanism.

12) Depth of Bury: Hydrant shall be suitable for installation in trenches 4½' deep, unless otherwise specified.

13) Painting Instruction: Two prime coats and one OSHA Safety Red finish coat shall be used, unless otherwise specified. Exposed area of fire hydrant shall receive one field coat of OSHA Safety Red after installation. The wetted surface of the hydrant shoe shall be epoxy coated to prevent corrosion of the waterway.

14) Pressure Rating: Test pressure 300 psi, working pressure 150 psi.

8. Check Valves:
Check valves shall be of the horizontal swing type; iron body bronze mounted, equipped with weighted lever or spring as specified or shown on the plans.

9. Water Service Assembly for 5/8" Water Meters: All materials for the installation of water services shall be as follows or approved equal:

 a. Water meter boxes (for use with all 5/8" and 1" meters) shall be cast iron as manufactured by Capitol Foundry or approved equal. Material shall consist of gray iron per ASTM A-48 (latest revision) Class 30.
 b. Meter yokes/setters shall be 3/4" for 5/8" meter with saddle nut. Inlet and outlet sides of meter setter shall be equipped with 3/4" compression copper coupling.
 c. 3/4" Corporation stop with corporation cock thread inlet shall be
those as specified in the approved materials list shown in Section 1 entitled Water System.

d. Pipe shall be 3/4" type "K" copper domestic manufactured.

e. Tail piece on yoke shall be 3/4" type "K" copper and be long enough to extend 18" outside of meter box.

f. Service Saddles:

1) All saddle castings must be ductile iron and meet the requirements of ASTM A-536-80, protected with epoxy or nylon coating.

2) All saddles must have a minimum of two (2) 1 1/2" wide (including bolts) stainless steel straps type 304 (18-8) where welds are passivated for resistance to corrosion. Exception: Ford FS202 which has two (2) bolts and a single strap with a minimum width of 3 1/4".

3) Gaskets must be made of Virgin NBR compound.

4) Service saddles are required on all taps made onto PVC pipe.

10. Water Service Setter for 1", 1 1/2" and 2" Water Meters:

All Materials for the installation of water services shall be as follows or approved equal:

a. The water meter box and cover (for use with all 1"meters) shall conform to the specifications as outlined under the "Water Meter Assembly for 5/8" Water Meters" and the dimensions as specified in the standard detail shown in Part II of this document for 1" meters.

b. General: All 1½" and 2" meter setters for domestic use at residential homes, condominiums, apartments, townhomes, etc. shall be equipped with a bypass valve. Meter setters for 1" meters shall be 1" x 12" riser meter yokes with compression fittings on the inlet and outlet sides. All 1 1/2" and 2" meter setters shall be constructed of seamless threaded red brass pipe, standard Type K hard copper tube (per ASTM B-88-62,) high quality brass (per AWWA C-800,) and leadless solder, and provide horizontal female pipe threads on both front and rear connections.

c. Bypass: Meter setters that are equipped with a bypass line and valve shall be appropriately sized with an inverted key or ball type stop threaded directly into the inlet bypass tee fitting. This bypass valve shall have a solid tee head and shall be lock wing type to lock this valve in the "off" position upon installation. If copper tube is used for the bypass line, the compression connection for the copper side of the bypass valve must be as produced by the following manufacturers:
Mueller Co., "110" compression connection for copper pipe; or
Ford Meter Box Co., "Grip Joint" connection for copper pipe.

Otherwise, a tee head inverted plug or ball type bypass valve is
required with a threaded connection. Both of the bypass tee
fittings, (inlet and outlet,) shall have brace pipe eyelets cast
within them to stabilize setter upon installation, if necessary.

d. **Angle Valves:** Flanged, inverted key or ball-type "tee head" angle
valves are required on both meter connections, and will include lock
wings and meter support bracket to aid in meter installation. Pack
Joint or Compression connections are NOT allowed on the vertical
tiser pipe; these connections must be threaded or soldered copper.
Valves shall be double drilled, (2" size only,) to accommodate both
1 1/2" and 2" meters. Angle or ball valves shall provide a stop or
check to limit movement of tee head at 90° Maximum, (from fully open
to completely off.) Arrows cast within the inlet valve shall
indicate direction of flow while in service.

e. **Dimensions:** Meter setters shall accommodate the following meter
dimensions:

1" Male x male pipe thread laying length: 10 3/4"± 1/16"
1 1/2" Flanged meter laying length: 13", plus gaskets
2" Flanged meter laying length: 17", plus gaskets

The rise or height of meter setter, measured vertically from
center line of inlet pipe thread to center line of meter flange bolt
shall be:

1" Meter setter, maximum height of 12"
1 1/2" Meter setter, maximum height of 8 1/2"
2" Meter setter, maximum height of 9 1/2"

11. **Valve Boxes:** All underground valves shall be installed in
approved cast iron valve boxes, having suitable base and
shaft sections and covers to protect the valve and permit
easy access and operation. Box assemblies shall have slip
adjustment (two-piece sliding type adjustable valve box).

12. **Air Release Valves:** All valves shall be designed in accordance with
the following standard and/or by the Engineer as required.

a. Type 1: Small orifice valves shall be either of the kinetic
design type, employing only one moving part, a stainless steel
float ball or of the stainless steel float and lever type. It shall
maintain closed position to prevent the loss of water by positive
seating of the float ball against a smoothly ground contact surface of the exhaust orifice. It shall automatically provide for the escape of air to atmosphere without the loss of water when the float ball moves away from the orifice seat. The body of the valve shall be cast iron and shall be coated to withstand moist environment.

Valve shall have a minimum of a one-inch N.P.T. inlet for 6", 8" and 12" pipe sizes and a two-inch N.P.T. inlet for pipes 16" and larger; and shall have a minimum of a 3/32" outlet orifice for 6", 8" and 12" pipe sizes and a 3/16" outlet orifice with 16" and larger pipes. Valve shall be suitable for 150 psi working pressure.

b. Type 2: Shall be a combination, dual unit valve, combining one (1) small and one (1) large unit, both employing the kinetic operating principal or of the stainless steel and lever type. For the Kinetic type, the only moving parts shall be two (2) stainless steel balls (one for each unit) which will remain in the respective throat areas when discharging air without blowing shut or collapsing the float ball(s). In the closed position, resulting from water filled line, the valve shall prevent leakage. The large orifice seat shall be of composition material and replaceable. The body of the valve shall be cast iron and shall be coated to withstand moist environment. Valve size shall be six (6) inch with 3/8" orifice for small unit and shall be suitable for 150 psi Working pressure.

13. Manholes:

 a. Gate Valve Manhole and Air Release Manhole: Shall be concrete, ASTM C-478 and diameters shall be as shown on plans and meets the specifications as described in Part V, Section B of this document entitled "Sanitary Sewer Systems".

14. Joint Restraint Systems:

Under normal conditions, the approved method of restraint shall be concrete thrust blocking per County standard details for dead-ends (cul-de-sacs, etc.); and horizontal bends, vertical bends, all valves, and reducers, tees and crosses; accompanied by megalug Mechanical Joint Restraint System. Mechanical Joint Restraint Systems can be used without thrust blocks in certain other approved conditions or special applications (i.e., poor soils) in Prince George County's Public Water System.

*All valves should be as close to a tee as possible and restrained to that tee, using approved mechanical joint restrainers. Where the valve cannot be installed and restrained at a tee, the valve (12" and larger) must be restrained using an approved Mechanical Joint Restraint System. When Mechanical Joint Restraint Systems are required due to specific applications) as referenced above, special design considerations, or poor soil conditions the engineer shall
provide the calculations used in determining the required length of pipe on either side of the fitting to be restrained. Also, the engineer shall provide special plan details for each necessary mechanical joint restraint system with a justification for its determined installation over thrust blocking. Mechanical Joint Restraint Systems require that sufficient lengths of pipe in addition to the fittings, be restrained.

The standard length of pipe requiring restraint varies from application to application and is designed based on variables such as soil bearing capacity, soil condition, pipe size, pipe material, pressure and fittings. Where conditions are encountered in the field during construction in which thrust blocks do not provide the required thrust protection, the Developer's and/or County's contractor shall be responsible for insuring that the engineer and those individuals on the County staff responsible for plan review prior to plan approval are contacted to evaluate and/or adjust the design appropriately. The County's Inspector should consult with the County Engineer if there are any questions about whether field conditions warrant special or additional restraint systems due to unsuitable soil conditions encountered during construction. All restraint devices must be UL listed and FM approved.

Restraints are acceptable for PVC and D.I. pipe under the following conditions:

a. For PVC Pipe

Where PVC pipe is connected to fittings, mechanical joint restraint shall be incorporated in the design of the follower gland and shall include a restraining mechanism which, when actuated, imparts multiple wedging action against the pipe, increasing its resistance as the pressure increases. Flexibility and minimal deflection of the joint shall be maintained after burial. Glands shall be manufactured of ductile iron conforming to ASTM A536-80. Restraining devices shall be of ductile iron heat treated to a minimum hardness of 370 BHN. There shall be no dissimilar metals allowed. Dimensions of the gland shall be such that it can be used with all AWWA approved standardized mechanical joint bell and tee-head bolts conforming to ANSI/AWWA A21.11 and ANSI/AWWA C153.53/A21.53 of latest revision. The mechanical joint restraint device shall have a working pressure of at least twice the working pressure of the pipe with a minimum of 150 psi. Twist-off nuts shall be used to insure proper actuating of the restraining devices.

All bell and spigot end joints within this length shall be restrained with a clamping ring and an additional ring designed to fit behind the bell end of the PVC pipe. The rings shall be connected with T-Head Bolts or Rods. All clamping rings shall incorporate serrations on the inside surface to provide positive restraint on the outside surface of the pipe and shall provide full support around the circumference of the pipe to maintain roundness. Restraining devices shall have a pressure rating equal to or greater than the PVC pipe, and shall be capable of withstanding a minimum test pressure of 2 times the pressure rating of the device. Restraining devices and T-bolts shall be manufactured from high strength ductile iron, ASTM A536, Grade
65-45-12. Clamping bolts and nuts shall be manufactured from completely corrosion resistant COR-TEN STEEL or equal. Restraining devices shall be as approved by Prince George County Engineer.

b. For Ductile Iron Pipe

Mechanical joint restraint shall be incorporated in the design of the follower gland and shall include a restraining mechanism which, when actuated, imparts multiple wedging action against the pipe, increasing its resistance as the pressure increases. Flexibility and minimal deflection of the joint shall be maintained after burial. Glands shall be manufactured of ductile iron conforming to ASTM A536-80. Twist-off nuts shall be used to insure proper actuating of the restraining devices.

Restraining devices shall be of ductile iron heat treated to a minimum hardness of 370 BHN. There shall be no dissimilar metals allowed. Dimensions of the gland shall be such that it can be used with all AWWA approved standardized mechanical joint bell and tee-head bolts conforming to ANSI/AWWA A21.11 and ANSI/WWA C153.53/A21.53 of latest revision. The mechanical joint restraint device shall have a working pressure of at least twice the working pressure of the pipe. All bell and spigot end joints within this length shall be restrained with an approved bell and spigot restraint device. Clamping ring restraint devices require an additional ring be designed to fit behind the bell end of the ductile iron pipe. The rings shall be connected with T-Head Bolts or Rods. Rods must be protected from corrosion either by rod material or coating.
15. Markers:

a. All markers shall have one of the applicable decal description to reflect the following

1) Upper decal, white and blue 2 7/8" x 11" standard, worded "CAUTION WATER PIPELINE"; or

2) Upper decal, white and blue 2 7/8" x 11" standard, worded "CAUTION WATER VALVE".

b. In addition, the lower decal shall contain the following:

1) Lower decal, white and blue 2 7/8" x 1 3/4" standard, worded "MISS UTILITY - 1-800-552-7001, PRINCE GEORGE UTILITIES".

c. Total height shall be 66".

d. Basic marker shall be white in color.

16. Flushing Hydrants

Flushing hydrants shall be manufactured in full compliance with the following specifications and shall also comply with AWWA's latest specifications on flushing hydrants:

a. The flushing hydrant shall offer a 360-degree directional discharge and shall have easy above ground accessibility at all times. It shall be capable of being locked and shall be freeze-proof. It shall be equipped with National Standard fire thread connections and a breakaway union to be used in all locations.

b. It shall be of size 2".

c. The hydrant barrel shall be 2" iron pipe. The exterior shall be painted with approved coating for durability. The overall length of hydrants can vary according to the depth of water systems.

d. The barrel and the standpipe shall be joined with a breakable malleable union. A brass hose connection, 2 1/2" NSFT with attached cap and chain, shall be provided for convenience in flushing.

e. The body valve shall have bronze body with automatic weep, such that when the valve is in OFF position the hydrant barrel shall automatically drain. The valve stem shall be above ground and shall be lockable to prevent tampering. Its operating device shall be of key type design, with permanent attachment to the valve stem.

17. Cast Couplings:

Center Sleeve: Made of ductile iron, Spec ASTM-A536, and coated with an enamel shop coat, sized to accommodate all AWWA pipes of the same nominal size. The center sleeve length of long barrel (sleeve) couplings shall be a minimum of 10".
End Ring: Made of ductile iron Spec ASTM-A536, and color coded with an enamel shop coat to easily identify its use on various types of pipe.

Gaskets: SBR rubber compound, Grade 30 per Spec ASTM D-2000 for normal water service and an extended shelf life.

Bolts: High strength low alloy steel bolts with heavy hex nuts, per AWWA C-111.

18. Casing Spacers:

Casing Spacers shall be bolt on style with a shell made in two sections of heavy T-304 stainless steel. Connecting flanges shall be ribbed for extra strength. The shell shall be lined with a PVC liner .090" thick with 85-90 durometer or neoprene rubber. All nuts and bolts are to be 18-8 stainless steel. Runners shall be made of ultra high molecular weight polymer (UHMW) or glass reinforced plaster. Runners shall be supported by risers made of heavy T-304 stainless steel or 10 gauge welded steel. The supports shall be mig welded to the shell and all welds shall be passivated or 3/8" diameter stud welded to band and locked with a locking fastener. The height of the supports and runners combined shall be sufficient to keep the carrier pipe at least .75" from the casing pipe wall at all times.
B. SANITARY SEWER SYSTEMS

1. Gravity Sewer and Force Main Pipe and Fittings:

a. Polyvinyl chloride (PVC) (non-pressure) pipe (6"-15") and fittings shall meet requirements of ASTM D3034 Type PSM SDR-35 or ASTM F1760 SDR-35 with elastomeric gasket joints meeting the requirements of ASTM D3212. Bedding shall be as required by the County for plastic pipes as shown in the County's Standard of Details. Additional criteria as set forth by the County of Prince George is outlined in Section 4.C.1. entitled "Supplemental Specifications - Additional Criteria for Polyvinyl Chloride Piping for Water and Sanitary Sewer Systems".

b. Polyvinyl Chloride (PVC) (non-pressure) pipe (18"-48") and fittings shall meet requirements of ASTM F679, Table I Type SDR-35 for large diameter solid wall PVC pipe with elastomeric gasket joints meeting requirements of ASTM D3212. Bedding shall be as required by the County for plastic pipes as shown in the County's Standard of Details.

c. Ductile iron (gravity or pressure) pipe shall meet requirements of AWWA C151. Pipe shall be thickness Class 52. Pipe shall have cement-mortar lining and a bituminous seal coat. Thickness classes shall meet requirement of AWWA C150.

d. Pressure Pipe and fittings shall have either mechanical joint or push-on joint, both conforming to the requirements of AWWA C111. Bolts shall be high strength cast iron having an ultimate tensile Strength of 75,000 psi and a minimum yield point of 45,000 psi.

e. Pressure Pipe fittings shall meet the requirements of AWWA C110 (ductile iron or cast iron) or AWWA C153 (ductile iron compact). All fittings shall be Pressure Class 250. Fittings shall have a cement-mortar lining and a bituminous seal coating or a 6-8 mil (nominal thickness) fusion bond epoxy lining/coating in compliance with AWWA C550.

f. Pressure Polyvinyl chloride pipe (PVC) 6", 8", and 12" in size shall conform to the requirements of AWWA Specification C-900, with gasket joints, DR-18 Class 150 with iron pipe O.D. Fittings shall be ductile iron or cast iron, Pressure Class 250, with mechanical joints. Additional criteria as set forth by the County of Prince George is outlined in Section 4.C.1. entitled "Supplemental Specifications - Additional Criteria for Polyvinyl Chloride Piping for Water and Sanitary Sewer Systems".

g. Push-on-joint and rubber gasket shall meet requirements of AWWA C111.

h. Cement mortar lining with bituminous seal coat for ductile iron pipe and fittings shall meet requirements of AWWA/ANSI C104/A21.4. Cement mortar lining shall be standard thickness.
i. Exterior bituminous coating for cast iron fittings and ductile iron pipe shall meet requirements of AWWA/ANSI C106/A21.6 or AWWA/ANSI C151/A21.51 as applicable.

2. Sanitary Sewer Manholes:

a. Manholes shall be constructed of precast reinforced concrete manhole sections in accordance with requirements of ASTM C478 and as shown on the Standard Details.

b. A maximum of two lift holes per manhole section may be provided.

c. Provide tongue and groove joints in manhole sections with a preformed groove in the tongue for placement of an O-ring type round, rubber gasket or Press Seal, Inc's Profile RS gasket. Gasket shall comply with requirements of ASTM C361.

d. All manhole joints shall be sealed on the exterior by the use of an external rubber sleeve similar to the infi-shield seal wrap, seal shall be made of EPDM rubber with a min. thickness of 65 mils. Each unit shall have a 2 inch mastic strip on top and bottom edge of the rubber wrap. Mastic shall be non-hardening butyl rubber sealant with min. thickness of 125 mils.

e. Provide flexible pipe connections to manholes for pipes 21 inches in diameter and smaller in size. Materials shall consist of EPDM and elastomers designed to be resistant to water, sewage, acids, ozone, weathering and aging. Use neoprene conforming to ASTM C443 and ASTM C923 and all stainless steel elements of the connector shall be totally non-magnetic Series 304 Stainless, excluding the worm screw for tightening the steel band around the pipe which shall be Series 305 Stainless. The worm screw for tightening the steel band shall be torqued by a break-away torque wrench available from the precast manhole supplier, and set for 60 - 70 inch/lbs. Cast or core drill openings in manholes to receive connectors. Connectors shall be suitable for field repair or replacements. Connectors not suitable for field replacement are unacceptable. The assembled connectors shall allow at least an 11° angular deflection of the pipe and at least one inch of lateral misalignment in any direction and be suitable for a normal variation in diameter or roundness for the pipe material used.

Connectors shall be Kor-N-Seal as manufactured by National Pollution Control Systems, Inc. or approved equal.

f. Manhole steps shall be corrosion-resistant and shall be one-half inch grade 60 steel reinforcing rod encapsulated in a copolymer polypropylene. The steps shall conform with ASTM C478 paragraph 11 and to the dimensions shown on the Standard Details.

g. Manhole frames and covers shall be molded of gray cast iron conforming to ASTM A48, Class 30. Castings shall not be coated. Seating surfaces between frame and cover shall be machined. The dimensions and weights shall conform to the requirements shown on the Standard Details.
h. Sealant for manhole frames shall be a one-component polyurethane sealant similar to Sika "Sikaflex" type 430.

i. Sealant for flexible pipe connections shall be a two component polysulfide sealant similar to Sika "Sikaflex" type 412 with primer type 419.

j. All manholes shall be watertight.

3. Sewage Air/Vacuum Break Valves without Bias Mechanism

All valves shall be designed in accordance with the following standard and/or by the Engineer as required:

The Sewage Air Release and Vacuum Break Valve shall consist of a compact tubular all stainless steel fabricated body, hollow direct acting float and solid large orifice float in H.D.P.E. – stainless steel nozzle and woven dirt inhibitor screen, nitrile rubber seals and natural rubber seat. The valve shall have an integral “Anti-Surge” Orifice mechanism which shall operate automatically to limit transient pressure rise or shock induced by closure to less than 1.5x valve rated working pressure. The intake orifice area shall be equal to the nominal size of the valve i.e., a 6” valve shall have a 6” intake orifice. Large orifice sealing shall be effected by the flat face of the control float seating against a nitrile rubber ‘O’ ring housed in a dovetail groove circumferentially surrounding the orifice.

Discharge of pressurized air shall be controlled by the seating and unseating of a small orifice nozzle on a natural rubber seal affixed into the control float. The nozzle shall have a flat seating land surrounding the orifice so that damage to the rubber seal is prevented. The valve construction shall be proportioned with regard to material strength characteristics, so that deformation, leaking or damage of any kind does not occur by submission to twice the designed working pressure. Connection to the valve inlet shall be facilitated by flanged ends conforming to ANSI B16.1 Class 125 or Class 250 Standards. Flanged ends shall be supplied with the requisite number of stainless steel screwed studs inserted for alignment to the specified standard. Nuts, washers, or jointing gaskets shall be excluded.

4. Sewage Air/Vacuum Break Release Valves with Bias Mechanism

All valves shall be designed in accordance with the following standard and/or by the Engineer as required:

The Sewage Air Release and Vacuum Break Valve shall consist of a compact tubular all stainless steel fabricated body, hollow direct acting float and solid large orifice float in H.D.P.E. – stainless steel nozzle and woven dirt inhibitor screen, nitrile/E.P.D.M. rubber seals and natural/E.P.D.M. rubber seat. The valve shall have an integral ‘Anti-Surge’ Orifice mechanism which shall operate automatically to limit surge pressures or shock induced by liquid
oscillation and/or rapid air/gas discharge to less than 1.5x valve rated working pressure. The intake orifice area shall be equal to the nominal size of the valve i.e., a 6” valve shall have a 6” intake orifice. Large orifice sealing shall be effected by the flat face of the control float seating against a nitrile/E.P.D.M. rubber ‘O’ ring housed in a dovetail groove circumferentially surrounding the orifice. Discharge of pressurized air shall be controlled by the seating and unseating of a small orifice nozzle on a natural/E.P.D.M. rubber seal affixed into the control float. The nozzle shall have a flat seating land surrounding the orifice so that damage to the rubber seal is prevented. The valve construction shall be proportioned with regard to material strength characteristics, so that deformation, leaking or damage of any kind does not occur by submission to twice the designed working pressure. Connection to the valve inlet shall be facilitated by flanged ends conforming to ANSI B16.1 Class 125 and Class 250 and ANSI B16.5 Class 150 and Class 300 Standards. Flanged ends shall be supplied with the requisite number of stainless steel screwed studs inserted for alignment to the specified standard. Nuts, washers, or jointing gaskets shall be excluded.

5. Sewage Plug Valves

a. All plug valves shall be of the non-lubricated, eccentric type with resilient faced plug and round ports of no less than 90%, or rectangular ports of no less than 80%, of the connecting pipe area, except valves of 24" or larger size shall have port areas of no less than 70% of the connecting pipe area.

b. Valves shall be for buried underground service and shall be rated for 175 psi up to 12" and 150 psi for sizes 14" and larger. Drop-tight shut off shall be provided at full rated working pressure in the standard flow direction and 50 psi in the reverse direction, except when full-rated sealing is required in both directions.

c. Valves 6" and larger shall be equipped with geared actuators with a 2" square operating nut. Handwheel and power actuated valves shall also include a 2" square operating nut for emergency operation. All gearing shall be enclosed in a semi-steel housing and be suitable for running in a lubricant with seals provided on all shafts to prevent entry of dirt and water into the actuator. The actuator shaft and the quadrant shall be supported on permanently lubricated bronze bearings. Actuators shall clearly indicate valve position and an adjustable stop shall be provided to set closing torque and to provide seat adjustment to compensate for change in pressure differential or flow direction change. All exposed nuts, bolts and washers shall be zinc plated. Valves and gear actuators for buried or submerged service shall have seals on all shafts and gaskets on the valve and actuator covers to prevent the entry of water. Actuator mounting brackets for buried or submerged service shall be totally enclosed and shall have gasket seals. All exposed nuts, bolts, springs and washers shall be stainless steel.

d. Valves shall open left (counterclockwise) and shall have mechanical joint end connections, or as specified by the County
e. Valve bodies and all other cast iron parts shall conform in all respects to the American Society for Testing Materials' Standard Specifications of Gray Iron Castings, ASTM Specification Designation A-126, Class B. The castings shall be clean and perfect without blow or sand holes or defects of any kind. No plugging or stopping of holes will be allowed. Body ends shall be flanged with facing and drilling in accordance with ANSI B16.1, Class 125 or mechanical joint in accordance with AWWA Standard C-111 or ANSI A21.11. All mechanical joint end valves shall be furnished complete with joint accessories (bolts, nuts, gaskets and glands).

f. Valve bodies shall be furnished with a raised seat surface completely covered with 90% pure nickel to insure that the resilient plug face contacts only nickel, or a one-piece 304 stainless steel seat ring threaded to the body. The nickel seat must be welded to the valve body or the body seat ring to produce a metallurgical bond with interpenetration to the base metal with a bond strength equal to or greater than the valve body or seat ring material. The nickel or stainless steel seat must be machined to a finish of not more than 16 micro-inches to achieve minimal friction and wear to the resilient plug face during valve operation. Whether welded or screwed, the valve seat shall be designed to provide uniform contact with the resilient plug face and to prevent the plug face from contacting any cast iron surface. Resilient seats or seats attached to the body by screws or any other method not specified herein are not acceptable. Plated or sprayed nickel seats or epoxy seats are not acceptable.

g. Valve bodies shall be furnished with an adjustable closed position stop. The seat end and standard flow direction shall be cast onto the valve body.

h. Resilient faced plug/operating shaft shall be of a one piece design of ASTM A126 Class B cast iron with a seating surface eccentrically offset from the center of the plug shaft, and shall have a precision molded resilient facing of chloroprene (Neoprene), Buna-N (nitrile) or nitrile-butadiene (Hycar). With the valve in the open position, all surfaces of the plug/shaft shall be substantially out of the fluid flow path.

i. Valve shaft journal bearings shall be sleeve type, sintered, oil impregnated, permanently lubricated, type 316 ASTM A743 grade CF-8M or AISI type 317 L stainless steel, or phenolic backed Teflon. Thrust bearings shall be located in the upper and lower journal areas and shall consist of stainless steel, Teflon, or a combination of those materials. Grit seals shall be provided in the upper and lower journals to prevent abrasive material from entering the bearing and seal areas.

j. Valve shaft seals shall conform to AWWA Standard C504-87, Section 3.7 and shall be of the bronze cartridge type utilizing O-rings, or the adjustable multiple V-ring type and shall be replaceable without
disassembling the valve, while the valve is under system pressure.

k. Valve interiors and exteriors shall be coated according to AWWA Standard C550-90 with a two-component high build epoxy suitable for Potable water service, with interior surfaces receiving 8 - 10 mils (dry film thickness) and exterior surfaces receiving 3 - 5 mils dft) or 8 - 10 mils (dft) hand-applied epoxy coating. For buried or submerged service, 8 - 10 mils (dft) of asphalt varnish may be substituted for the exterior coating.

l. Valve testing shall be conducted per AWWA C504-87 Section 5, covering rubber seated butterfly valves. Each valve shall be performance tested per paragraph 5.2 assuring valve operation. Body seat and shell leakage testing is to be conducted on each valve as per paragraphs 5.3 and 5.4. Proof of design testing shall be conducted per paragraph 5.5 and witnessed by a third party inspection agency. Certified copies of this report shall be available upon request.

m. Eccentric plug valves for wastewater service shall be as approved by the County Engineer.

C. SUPPLEMENTAL SPECIFICATIONS

1. Additional Criteria for Polyvinyl Chloride Piping for Water and Sanitary Sewer Systems: Effective January 1, 2008 all PVC piping must meet the following criteria:

a. Cell Classification for Water Pipe shall be 12454-B.

b. Cell Classification for Sewer Pipe shall be 12454-B or 12364-C.

c. Water Pipe (C-900) shall meet the specification requirements and have the following certifications from:

1) FM (Factory Mutual)

2) UL (Underwriters Laboratory)

3) NSF (National Sanitation Foundation)

d. All pipe (sizes - 16" and smaller) shall be furnished with standard industry color coding:

 Water - Blue
 Gravity Sewer - Green
 Force Main Sewer - Brown

e. Manufacturer's Certification of ASTM and AWWA testing requirements will include the following:

1) For Water and Force Main Sewer Pipes (C-900) (4", 6", 8" and 12")
a) Each piece has been hydrostatically proof tested to AWWA C-900 Requirements

b) Pipe meets all other applicable ASTM & AWWA C-900 Requirements

2) For Gravity Sewer Pipe (SDR 35) (4"-15")

 a) Pipe meets all ASTM D3034 Requirements
 b) Pipe meets cell classifications as established by ASTM standards, the County's minimum criteria for plastic pipe, and the certification shall state what the cell classification is.

3) Manufacturer's certification will be signed by an officer of the company and will be furnished to the contractor and/or supplier before pipe is delivered to a project site. Certifications from supplier shall include:

 a) County Contract Number
 b) Location - Project Name
 c) Utilities Contractor Name
 d) Pipe type class
 e) Manufacturer's name